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SUMMARY 
23830 

Large or iented surface areas are required f o r  sane spacecraf t  appl icat ions 
such as space r ad ia to r s ,  so l a r  co l lec tors ,  and micrometeoroid penetration ex- 
periments. 
s t ruc tu res  t h a t  can be contained i n  t h e  payload envelopes of launch vehicles. 
To explore the  problems of stowage and deployment of such expandable s t ructures .  
with r i g i d  plane surfaces,  a sample spacecraft mission of a micrometeoroid 
penetrat ion survey was considered. Var i a t ions  i n  t h e  spin-axis a t t i t u d e  of a 
spin-s tabi l ized spacecraf t  i n  several 400-mile c i r c u l a r  o r b i t s  of t h e  Ea;rth 
a l s o  were determined. 

Obtaining these l a rge  a reas  necessi ta tes  t h e  use of expandable 

Two types of expandable s t ruc tures ,  wraparound wings and folding umbrel- 
las, were considered f o r  t he  sample mission. O f  these  two types,  t he  fo ld ing  
umbrella was t h e  better choice because of i t s  inherent s t a b i l i t y  about t h e  
o r ig ina l  spin ax i s ,  smaller maximum dimension f o r  a given exposed surface area, 
and more pos i t i ve ly  control led deployment. 

Att i tude s tud ie s  that considered only t h e  e f f ec t s  of grav i ty  gradient 
torque and Ea r th  oblateness on the  precession of t h e  sp in  axis of t h e  umbrella 
package were made f o r  o r b i t s  i n  several  planes. A polar o r b i t  with the  sp in  
axis e i t h e r  pazallel or perpendiculas t o  t h e  o r b i t a l  plane resulted i n  an es- 
s e n t i a l l y  s t ab le  a t t i t u d e  of t h e  package. An equator ia l  o r b i t  with t h e  spin 
axis paxallel t o  t h e  o r b i t a l  plane r e su l t ed  i n  a r e l a t i v e l y  stable a t t i t u d e  
that could approximate t h e  d i r ec t ion  of t h e  Ewth ' s  o r b i t a l  ve loc i ty  vector,  
The rate of sp in  a f fec ted  the  rate of axis precession i n  a l l  o r b i t s  considered 
but d id  not a f f e c t  t h e  magnitude of deviation f r o m  the  i n i t i a l  o r ien ta t ion  f o r  
polar and equator ia l  o rb i t s .  

INTRODUCTION 

Some spacecraf t  systems require  oriented surfaces  of la rge  area f o r  uses 
such as so la r - ce l l  arrays, space rad ia tors ,  and meteoroid penetrat ion experi- 
ments. Volume r e s t r i c t i o n s  imposed by most launch vehicles necess i ta te  t h e  use 



\ 

of erectable or expandable s t ruc tu res  t o  obtain these  l a rge  a reas  because t h e  
configuration of t he  package i n  o r b i t  cannot be f i t t e d  d i r e c t l y  i n t o  t h e  pay- 
load envelope of t h e  launch vehicle.  I n  some cases ,  sec t ions  of t h e  displayed 
area must remain e s s e n t i a l l y  r i g i d  i n  both t h e  stowed and deployed conditions.  
This study of expandable s a t e l l i t e  packages explores some of t h e  problems of 
stowage and deployment of r i g i d  plane sur faces  and considers longtime a t t i t u d e  
var ia t ions  of spin-s tabi l ized satel l i tes .  

Expandable s t ruc tu res  have been used i n  seve ra l  spacecraft  t h a t  are now 
i n  o r b i t  around t h e  Earth, bu t  t hese  have been e i t h e r  of t h e  i n f l a t a b l e  type 
(such as the  balloons f o r  Echo I and Echo 11) or of t h e  r e l a t i v e l y  s m a l l  r i g i d -  
panel type (such as t h e  s o l a r - c e l l  arrays f o r  Explorer XI1 and o the r s ) .  De- 
ployment o f  l a rge  r i g i d  panels t o  form a segmented parabolic r e f l e c t o r  f o r  t h e  
proposed solar-energy converter Sunflower has been described i n  reference 1. 
These deployment techniques are not necessar i ly  s a t i s f a c t o r y  f o r  o ther  applica- 
t i o n s  tha t  may requi re  l a r g e r  a reas ,  more s t r ingen t  volume requirements on t h e  
folded array, or smaller maximum dimensions f o r  a given area t o  f a c i l i t a t e  
ground t e s t i n g  i n  space-environment f a c i l i t i e s .  

Orientation of t he  displayed area i n  a p a r t i c u l a r  d i r e c t i o n  may be 
required f o r  c e r t a i n  types of s a t e l l i t e  missions. Spin s t a b i l i z a t i o n  o f f e r s  a 
simple way t o  e s t a b l i s h  an o r i g i n a l  o r i en ta t ion  of t h e  s a t e l l i t e  and provides 
some degree of a t t i t u d e  s t a b i l i t y .  The o r i en ta t ion  of a spinning body i n  o r b i t  
about the Earth is  a f f ec t ed  by many phenomena, however, such as oblateness of 
t h e  Earth, g rav i ty  gradient torque, magnetic torques, and nature  of t h e  
o r b i t .  
gradient  torque and Earth oblateness on t h e  spin-axis a t t i t u d e  of an Earth 
s a t e l l i t e  i n  a c i r c u l a r  o rb i t .  These two f ac to r s  are believed t o  account f o r  
most of the  perturbations i n  s a t e l l i t e  a t t i t u d e  f o r  most of t h e  o r b i t s  of i m -  
mediate in t e re s t .  

Reference 2 provides a method f o r  determining t h e  e f f e c t  of g rav i ty  

The study herein reported inves t iga tes  two new stowage and deployment 
methods for expandable s a t e l l i t e  packages having plane segments. For t he  
purpose of t h i s  study, a sample mission and launch vehicle w e r e  chosen i n  order 
t o  impose some physical l i m i t s  on t h e  preliminary design considerations f o r  
t hese  expandable packages. The sample mission w a s  a micrometeoroid penetrat ion 
flux-rate survey made i n  a 400-mile c i r c u l a r  o r b i t  of t h e  Earth. The assumed 
launch vehicle wits t h e  Thor-Delta with a maximum payload capacity of about 
750 pounds (for t h e  400-mile c i r c u l a r  o r b i t  considered here)  and with a pay- 
load envelope t h a t  w a s  e s s e n t i a l l y  annular i n  cross sec t ion .  The two stowage 
and deployment methods invest igated were wrap-around wings and folding 
umbrellas. The general  design and nature of deployment f o r  both methods a r e  
discussed b r i e f l y .  Some of t h e  fo rces  involved i n  deployment were evaluated 
f o r  t he  umbrella-type expandable s a t e l l i t e  package. I n  addi t ion ,  va r i a t ions  i n  
t h e  spin-axis a t t i t u d e  w e r e  calculated f o r  a spin-s tabi l ized umbrella sa te l l i t e  
i n  several d i f f e r e n t  400-mile c i r c u l a r  o r b i t s  of t h e  E a r t h  and for seve ra l  sp in  
rates.  

DESIGNS OF EXPANDABLE STRUCmS CONSIDERED 

To i l l u s t r a t e  some preliminary design considerations f o r  expandable spin- 
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stabi lczed satelli-ce packages k ? i ~ i r , -  r i g i d  pazel 
segments, a study was made of two bas ica l ly  d i f -  
fe ren t  methods for stowing and deploying such 
s t r u c t - x e s .  
load envelope of t h e  launch vehlcle considered 
i n  t h i s  study a r e  show- i n  f l g x e  1. 
stowage and deployment methods studied u t i l i z e s  
a pa i r  of wings wrapped mound t h e  f inal-s tage 
rocket casing. 
folded m b r e l l a  t h a t  surrounds t h e  f inal-s tage 
rocket casing. These two methods are described 
i n  the following paragraphs. 
designs presented herein a r e  proposed spec i f i -  
c a l l y  f o r  t h e  sample mission i n  which the  Thor- 
Delta l a u c h  vehicle i s  used, the design 
princLples call be used i n  a Ember of appllca- 
t i o n s  where the need a r i s e s  f o r  deployment of 
large sixface areas  i-: the space en?riroimeric. 
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The general diaensions of the  pay- 

One of t h e  

The other method employs a 

Although the 

Figure 1. - Approximate dimensions of payload 
envelope considered in design study of 
expandable satell i te packages. A l l  d imensions 
are in inches. 

Wrap-Around Wing 

One xetnod of stowing a t h i n  s t ruc ture  o f  
l a r g e  surface area i n  t h e  essent ia l ly  an- 
nular payload envelope of the  laonch vehicle  
( f i g .  1) is t o  wrap t h e  surfaces around t h e  in- 

0.010-in. plastic-reinforced Glass clothl 

L Test panels, \ 4 
I l i 8 - i n  flexible foam-\ 

--.. 1 - ?. 
Lamination detail 

\ 
Surface development from stowed 
to deployed condi t ion -Telemetry and power section 

--A *_c 

L F i n a l - s t a g e  rocket motor 
CD-7921 

Figure 2. - Rug-type w r a p a r o u n d  wings as expandable s t ruc tu re  fo r  satell i te package, 

3 



a 

ner cylinder of t h e  envelope. If a f l e x i b l e  base can be used f o r  mounting t h e  
components t o  be displayed, t h e  wrapping can be compactly placed next t o  t h e  
cyl inder .  If t h e  base must be r i g i d  and f l a t ,  t h e  a rea  can be segmented and 
wrapped polygon fashion about t h e  inner cyl inder .  Examples of these  two design 
concepts are now described. 

Rug-type wrap-around wing. - Figure 2 shows a rug-type wrap-around-wing 
design for stowing an expandable s t ruc tu re  with la rge  surface area.  A f l e x i b l e  
lamination of g l a s s  c lo th  and foamed p l a s t i c  sheets  forms the  base f o r  t h e  
t e s t  panels. 
cy l indr ica l  contour, or must be subdivided i n t o  s m a l l  segments t h a t  w i l l  con- 
form approximately t o  t h i s  contour. 
diametr ical ly  opposite each other on t h e  f l n a l  rocket stage.  I n  t h e  stowed 
condition these  wings a re  wrapped compactly around t h e  rocket s tage i n  over- 
lapping layers .  Deployment of t h e  s t ruc tu re  i s  accomplished by u t i l i z i n g  a 
port ion of t h e  sp in  energy imparted t o  the  f i n a l  s tage f o r  s t a b i l i t y .  A s  t h e  
wings unfold, t h e  moment of i n e r t i a  of t h e  package increases ,  and t h e  sp in  
ve loc i ty  correspondingly decreases i n  compliance with t h e  pr inc ip le  of con- 
servat ion of moment of momentum. Some form of r e s t r a in ing  device i s  required 

The tes t  panels must e i t h e r  be f l e x i b l e  enough t o  conform t o  the  

The deployed area forms two wings mounted 

Stowed condition of 
expandable structure 

Channel  frarne- 

Plastic-foam core 

- i  Test su rfaces-.C)* ',, -- 
1 

--. i Deployed condition of expandable structure 

\ Self-locking hinge joint \ 

1 

CD-7920 

Figure 3. - Segmented or hinged wrap-around wings as expandable structure for satellite package. 
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t o  absorb gradually any excess energy i n  order t o  permit su i t ab le  unfold- 
ing  of t he  wings and t o  prevent excessive osc i l la t fon  of t h e  wings i n  t h e  ex- 
tended posi t ion.  

The rug-type wrap-mound-wing design achieves very economical use of t h e  
payload-envelope volume. Large areas a re  possible with t h i s  type of design by 
using long wing spans (within t h e  l i m i t s  of payload volume and weight r e s t r i c -  
t i o n s ) .  These l a rge  wing spans, however, mean, among other th ings ,  longer 
instrument leads  t o  t h e  components located on t h e  wings and more d i f f i c u l t y  i n  
ground t e s t i n g  t h e  package i n  environmental f a c i l i t i e s .  

Segmented o r  hinged-type wraparound wing. - For appl ica t ions  where the  
segments of t h e  s t ruc tu re  t o  be deployed m u s t  remain as plane surfaces  a t  a l l  
times, a scheme l ike the  one shown i n  f igu re  3 can be used f o r  t he  wrap- 
mound wings. 
other.  
stage,outwa.rd s o  t h a t  t h e  wings can be wrapped i n  overlapping layers  around the  
inner cyl inder  of  t h e  payload envelope. 
f i gu re  3 as being a good compromise between l o s s  of payload volume due t o  dead 
space i n  t h e  annular stowage area and number of  hinge jo in t s .  

Each wing i s  subdivided i n t o  segments t h a t  are hinged t o  each 
The lengths  of t he  segments of t h e  wing spars  increase f r o m t h e  rocket 

An octagonal pa t t e rn  is  shown i n  

The individual  segments of t he  wings consist  of r i g i d  panels of a compos- 
i t e  sandwich construct ion and l i nks  of t h e  main support asms or spars of the  
wing. The panels a r e  fastened t o  t h e  spars and can be removed e a s i l y  f o r  
repair or replacement. As noted i n  figure 3, t h e  s i z e  of t h e  panels used i n  
t h i s  example i s  t h e  same f o r  a l l  segments o f t h e  wing; the differences i n  
segment lengths  are i n  t h e  lengths of t h e  wing-spar l i n k s  t o  which t h e  panels 
are mounted. 
loca t ions  on t h e  wings, and a la rge  inventory of various s i z e  panels can thus 
be avoided. This system involves some l o s s  in  exposed area f o r  a given wing 
span, but t h e  fabr ica t ion  and servicing of  the package are greatly s implif ied.  

I n  t h i s  way, a s ingle  basic  panel pa t t e rn  can be used f o r  a l l  

The hinge j o i n t s  ( f ig .  3) are equipped with self- locking spring-loaded 
pins  t o  hold t h e  segments i n  l i n e  with each other after deployment. Some 
addi t iona l  design d e t a i l s  f o r  cont ro l l ing  deployment, which would probably be 
required but are not shown on t h e  figure, a r e  (1) a method of locking each 
panel i n  t h e  folded pos i t ion  u n t i l  t h e  panel outboasd of it has been unfolded 
and locked i n  t h e  deployed posi t ion,  and ( 2 )  a r e s t r a i n i n g  device t o  absorb 
some of t h e  energy during deployment t o  prevent t h e  f i n a l  torque on t h e  
base hinge j o i n t  from being prohibi t ive a t  the conclusion of deployment. 

As i n  t h e  case of t h e  rug-type wrap-wound-wing design, a la rge  wing area 
can be obtained with t h e  hinged-type wrap-around-wing package by using a long 
wingspan if payload weight and volume l imi ta t ions  permit. The same disadvan- 
tages  of long wingspans apply here as were noted previously f o r  t h e  rug-type 
wrap-around-wing design. 

Tumbling of wrap-around wing. - A spinning body seeks the  mode of least 
energy, which i s  r o t a t i o n  about t he  axis w i t h  t h e  greatest moment of i n e r t i a .  
Because t h e  moments o f  i n e r t i a  of t h e  deployed wrap-around-wing designs shown 
i n  figures 2 and 3 are greater  about t h e  axes normal t o  t h e  deployed surface 
( sp in  axis i n  f i g .  4( e )  ) than about t he  longitudinal axis (spin axis i n  
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/<Spin axis 1 
(a) Orientation before deploy- 

(c) Orientation after tumbling. 

Figure 4. - Orientation of spin-stabilized wrap-around-wing satellite 
package. 

f i g .  4 ( a ) ) ,  t he  wrap-around-wing de- 
s igns a re  not s t ab le  about t h e i r  o r i -  
g i n a l  spin ax is .  The spinning package 
w i l l ,  therefore ,  tumble or r ea l ine  it- 
s e l f  s o  t h a t  t h i s  normal a x i s  becomes 
t h e  sp in  ax i s  ( f i g .  4 ) .  The r a t e  a t  
which t h i s  realinement occurs depends 
on t h e  r e l a t i v e  magnitudes of t h e  pr in-  
c i p a l  moments of i n e r t i a ,  r a t e  of sp in  
of t h e  package, and t h e  damping charac- 
t e r i s t i c s  of t h e  s a t e l l i t e .  The tum- 
b l ing  rates were not calculated for t he  
proposed designs shown, but t he  r a t e s  
could be control led t o  some degree with 
proper r ed i s t r ibu t ion  of mass about t h e  
various axes and by t h e  amount of damp- 
ing provided. 

For t he  sample mission discussed 
i n  t h i s  r epor t ,  it i s  desired t h a t  t h e  
f i n a l  sp in  axis be normal t o  t h e  de- 
ployed area  so t h a t  t h e  surface can be 
properly or iented for meteoroid pene- 
t r a t i o n  study. Therefore, t h i s  tum-  
b l ing  of t he  package i s  a necessary ma- 
neuver t o  achieve the  desired surface 
o r i en ta t ion  f o r  t h e  sample mission. An 
a l t e rna t ive  method of achieving t h i s  
surface or ien ta t ion  without tumbling i s  
t o  r o t a t e  t h e  wings 90' around the  
t ransverse axis through the  wing t i p s  
immediately a f t e r  deployment. This can 
only be accomplished a t  t h e  expense of 
grea te r  weight, more complexity, re- 

duced r e l i a b i l i t y ,  and l o s s  of payload volume. 

package pr ior  t o  deployment. 
then be required t o  deploy t h e  wings, and t h e  passive a t t i t u d e  cont ro l  inherent 
i n  t h e  spin of t he  package would be l o s t .  

For other  appl icat ions,  where 
I t h i s  tumbling ac t ion  i s  not desirable ,  it can be avoided by despinning t h e  

A self-contained power supply, however, would 

Umbrella 

A second type of expandable configuration for t h e  deployment of r i g i d  
panels t h a t  can b e  f i t t e d  i n t o  t h e  annular space of t h e  payload envelope i s  an 
umbrella s t ruc tu re  such as shown i n  figure 5. I n  t h e  deployed condition, such 
an umbrella has t h e  form of a c i r cu la r  f l a t  disk with a hole a t  t h e  center. 
For stowing, t h e  disk i s  subdivided i n t o  panels with a maximum width dimension 
such tha t  t h e  disk can be contained within t h e  annular space between t h e  inner 
cylinder and t h e  outer  l i m i t s  of t h e  payload envelope ( f i g .  1, p. 3).  Support 
arms equally spaced among the  panels provide t h e  necessary mechanism f o r  moving 
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(a) Stowed cmiiition. 

Gepioy& tondiiicin. 

Figure 5. - Nalf-scale working model of telescoping-umbrella package. 

t h e  pane ls  from t h e  stowed t o  t h e  deployed condi t ion  and maintain t h e  disk 
shape after deployment. The l eng th  of t'ne pane ls ,  which i s  equa l  t o  the d i f -  
f e rence  between t h e  iriner and ou te r  radi i  of t h e  d i s k ,  i s  limited by t h e  
l o n g i t u d i n a l  d h e n s i o n  of t h e  payload envelope. The umbrella conf igu ra t ion  uses  
t e l e scop ing  ( lengthening)  sllpport arms t o  gain a d d i t i o n a l  area. Soze of t h e  
f a c t o r s  t h a t  l i m i t  the area t h a t  can be obtained wi th  a te lescoping-umbrel la  
conf igu ra t ion  are t h e  moun t  of t e l e scop ing  of t h e  support  arms t h a t  can  be 
done p r a c t i c a l l y ,  the n e c e s s i t y  of subdividing t h e  d i s k  i n t o  numerous pane l s ,  
and t h e  payload weight and volume l imi t a t ions .  

7 



!ai  Folding of panel asse!iiblies. 

(b) Support linkages. 

Figure 6. - Details of half-scale working model of telescoping-umbrella package. 
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(a) Stowed condition. (b) Intermediate condition. 

(c) Deployed condition. 

Figure 7. - Schematic diagram of support linkage for telescoping-umbrella 
P d V .  

For a telescoping-umbrella 
package, t he  maximum width dimen- 
s ion f o r  a given deployed area  is  
less than t h a t  for the  wrap-around 
designs. This fea ture  makes the  
t e s t i n g  of the  package, f u l l  s i ze  
or  as a scaled model, much e a s i e r  
i n  space-environment chambers. 
The smaller maximum width dimen- 
s ion  of t h e  umbrella package a l s o  
means shor te r  lengths of i n s t ru -  
ment leads t o  components located 
on the  deployed area than would be 
possible  with the  wrap-around 
designs. Any d is turb ing  forces  
ac t ing  on t h e  package c rea t e  
smaller d i s turb ing  moments on t h e  
shor te r  spans of t h e  umbrella- 
type package than on the  longer 
spans of t h e  wrap-around packages; 
therefore ,  t h i s  aspect of t h e  at- 
t i t u d e  problem is less severe with 
t h e  umbrella package. 

Satellite package f o r  sample 
mission. - Figures 5 t o  7 show a 
working model and a schematic 
diagram of a telescoping-umbrella 
sa te l l i te  package proposed f o r  t h e  
sanple mission of t h e  present 

~ 

study. I n  t h e  stowed condition, the  package has t h e  shape of a 16-sided r i g h t  
prism ( f i g .  5 ( a ) ) ,  which deploys i n t o  a f la t  annular d i sk  ( f i g .  5 ( c ) ) .  
Sixteen support l inkages divide t h e  disk into segments. The method of sub- 
dividing these segments i n t o  panels t h a t  can be stowed i n  t h e  ava i lab le  payload 
envelope i s  seen i n  f igu res  5 (b ) ,  6 (a ) ,  and 8. 

Each segment of t h e  d isk  i s  composed of five panels; t h e  center  panel i s  
rectangular ,  and t h e  other  four  a r e  t rapezoidal  ( f i g .  8 ) .  
t he  t rapezoida l  panels i s  determined by t h e  r a d i a l  dimension (difference i n  
r a d i i )  of t h e  annular p a r t  of t h e  payload envelope. The panels are hinged t o  
each o ther  and thence t o  t h e  support arms with telescoping rod and tube as- 
semblies. As can be seen i n  figures 5 and 6, t h e  t rapezoidal  panels f o l d  in-  
ward and are completely hidden from v i e w  when t h e  package is  i n  t h e  stowed 
condition. The rectangular  panels make t h e  stowed condition of t h e  package a 
more r i g i d  configuration t h a t  r e s i s t s  d i s to r t ion  at spin-up and reduces t h e  
m a x i m u m  width dimension of t he  t rapezoidal  panels. 
ing t h e  segments w a s  a l s o  devised t o  minimize twis t ing  o r  warping of t h e  
panels during deployment of t h e  expandable package. 

The maximum width of 

This method of subdivid- 

Figures 7 and 8 show t h a t  t h e  panel assemblies axe mounted t o  te lescoping 
rod and tube assemblies on t h e  support linkages. Each of these  rod and tube 
assemblies p ivots  on a f ixed  point  (point  1) on the s t a t iona ry  p a r t  of t h e  
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{,,-Hinge lines ;I a-a' and c-c' 

L' Hinge l ine  b-b' 

I 

Hinge lines--a b c 

(a) Deployed condition (top view). (b) Stowed condition (longitudinal section). 

Figure 8. - Schematicdiagram of segment of telescoping-umbrella satellite package (U16 of total disk). 

s t e l l i t e  package. The hinge l i n e  between t h e  panel and main support rod i 
labeled a-a' i n  f igure  8; the  hinge l i n e s  between panels a r e  labeled b-b' and 
e-c ' . 

0 

D e t a i l s  of the support linkages can be seen i n  f igures  6(b)  and 7. The 
support linkages a r e  interconnected through t h e  panels and through common 
anchors t o  the  s ta t ionary  p a r t  of t h e  package a t  the  linkage pivot point 
(point  1, f i g s .  7 and 8 )  and t o  a s l i d e r  (point 5, f i g .  7 ) .  Each support 
linkage consis ts  of th ree  rods and a tube. The main support rod is  attached a t  
i t s  inboard end (point  1) t o  t h e  c e n t r a l  p a r t  of t h e  package. This rod r o t a t e s  
through an angle of 90° during deployment from a posi t ion p a r a l l e l  t o  the 
longitudinal axis of t h e  s a t e l l i t e  t o  a pos i t ion  normal t o  the  longi tudinal  
axis .  The tube s l i d e s  o r  telescopes on t h i s  rod. I n  the  stowed condition, the  
inboard end of the tube is against  t h e  attachment point of t h e  main support 
rod (point 1). A s  t h e  package i s  deployed, t h e  tube s l i d e s  outward on t h i s  
rod ( f i g .  7 ) .  The panels adjacent t o  the support linkages a r e  attached by 
hinges t o  the  tubes,  and a l l  t h e  panels move outward with the tubes during 

i s  attached 
t o  the  telescoping tube near the inboard end of t h e  tube. The inboard end of 
rod A (point 5 )  i s  attached t o  a s l i d e r .  Rod A regula tes  t h e  opening of t h e  
telescoping rod and tube assembly and limits i t s  ult imate t r a v e l .  
( f i g .  7)  is attached at i t s  inboard end (point  2 )  t o  t h e  c e n t r a l  par t  of t h e  
package and a t  i t s  outboard end t o  a point  (point  4)  near the  middle of rod A. 
Rod B helps support rod A and a l s o  provides a convenient route  f o r  running 
instrument leads t o  components located on t h e  panels of t h e  disk.  The motion 
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of the  support linkage during the  deployment 
process i s  demonstrated schematically i n  f igu re  7. 

axis I 

(a) Orientation before deploy- 
ment. 

(bl Orientation after deployment. 

Figure 9. -Orientation of spinstabilized 
umbrella satellite package. 

The f e a s i b i l i t y  of t h i s  design of an  expand- 
ab le  s t ruc tu re  was demonstrated experimentally by 
deploying t h e  working model i n  a free-wheeling sp in  
r i g  under conditions of Earth grav i ty  and atmo- 
spheric  drag. It should be pointed out t h a t  some 
of the  d e t a i l s  of t h e  working model i n  figures 5 
and 6 ,  such as the blocks and pins on the  ends of 
t h e  support linkages, a r e  fea tures  of t he  model 
only and would not be present on a f l i g h t  package. 
Also, t he  materials and methods of construction 
used i n  t h e  model are not  necessar i ly  those 
which would be used i n  a f i n a l  design. 

Inherent s t a b i l i t y  of umbrella package. - 
Because the  moment of i n e r t i a  of t he  deployed 
umbrella package i s  grea te r  about t h e  longi tudinal  
or  o r ig ina l  spin axis ( f ig .  9 )  than about e i t h e r  of 
t h e  other  two pr inc ipa l  axes, t h i s  spinning mode 
i s  t h e  mode of l e a s t  energy and is ,  therefore ,  a 
s t ab le  mode. 
shown i n  f igures  2 and 3, t h e  umbrella package w i l l  
continue t o  spin about i t s  o r ig ina l  sp in  axis. For 
t h e  sample mission considered here, t h i s  is  a 
des i rab le  condition. 

Unlike t h e  wrap-wound-wing designs 

I DYNAMIC ANALYSIS OF PACKAGE DEPLOYMENT 

A sp in  about t h e  longi tudinal  ax i s  i s  applied t o  the  f i n a l  s tage of t h e  
Thor-Delta launch vehicle  t o  maintain d i rec t iona l  s t a b i l i t y .  This s t a b i l i z i n g  
sp in  i s  a r e a d i l y  ava i lab le  source of energy f o r  deploying t h e  expandable 
s t ruc tu re  of t h e  proposed umbrella s a t e l l i t e .  This type of deployment is  
r e fe r r ed  t o  here in  as sp in  deployment. 

~ 

The cen t r i fuga l  forces  r e su l t i ng  from the spinning motion, however, cause 
undesirable stresses i n  t h e  various components and j o i n t s .  I n  t h e  stowed 
condition, t h e  e f f e c t s  of t he  cent r i fuga l  forces can be l imi ted  by f i rmly  
anchoring t h e  folded s t ruc tu re  a t  numerous points t o  t h e  s t a t iona ry  p a r t s  of 
t he  package and t o  t h e  f inal  rocket s tage.  Once t h e  s t ruc tu re  is re leased  for 
deployment, t h e  e f f e c t s  of  these forces  a r e  concentrated at  a f e w  points.  A 
dynamic ana lys i s  of t h e  telescoping-umbrella package is  presented i n  t h i s  
repor t  t o  determine t h e  magnitudes o f  t h e  forces and moments involved. I n  
addi t ion  t o  t h e  dynamic ana lys i s ,  area comparisons we made f o r  various 
telescoping-umbrella design concepts. 

A n  ana lys i s  was made of t h e  deployment of t h e  telescoping-umbrella package 
Symbols used i n  t h e  ana lys i s  are 

The assumptions on which t h e  ana lys i s  was based and t h e  
shown schematically i n  figures l O ( a )  and (b) .  
given i n  appendix A. 
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(a) Schematic diagram of umbrella linkage. (b) Idealized dynamic system. 

Figure 10. - Dynamic system used i n  analysis of restricted spin deployment of telescoping-umbrella satellite. 

equations t h a t  were developed t o  describe t h e  dynamics of t h e  package a r e  given 
i n  appendix B. 
and dynamic f a c t o r s  i n  these equations, i l l u s t r a t i v e  r e s u l t s  were obtained. 
The kinematics of the  package are described by t h e  s l i d e r  t r a v e l  d and panel 
extension Alp of the  mechanism, which a r e  shown i n  f igure  lO(c)  as functions 
of t h e  deployment angle cp. An IBM 7094 e lec t ronic  computer was used t o  solve 
the  equations. 

By assigning representat ive numerical values t o  t h e  geometric 

The spin energy s tored i n  t h e  s a t e l l i t e  makes possible a convenient and 
simple method of accomplishing deployment of an expandable umbrella package. 
Overstressing of t h e  s t ruc ture  can r e s u l t ,  however, i f  deployment i s  allowed 
t o  progress unrestr ic ted.  If t h e  package deployment is  res t ra ined ,  the  package 
spin deceleration 
can be reduced. 
a hydraulic dashpot was assumed as a re ta rd ing  mechanism. 
F S , ~  ( f i g .  10(b)) of such a mechanism i s  d i r e c t l y  proportional t o  the l i n e a r  

.. eneg and t h e  terminal ve loc i ty  of the  support arms @f 

Therefore, i n  the  ana lys i s ,  a simple energy absorber such as 
The re ta rd ing  force 
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Some r e s u l t s  of t h e  ana lys i s  are shown as functions of t h e  damping coef- ' f i c i e n t  p i n  f igu re  11. The results are f o r  t h e  spec i f i c  design considered 
I herein and f o r  an i n i t i a l  sp in  ve loc i ty  of 125 rpn (13.1 radians/sec) .  

with similar t rends  would be obtained, however, for somewhat d i f f e r e n t  mecha- I nisms and f o r  d i f f e r e n t  s p i n  speeds. 

R e s u l t s  

The propor t iona l i ty  f ac to r  between 
I the  damping force  F5,s and the  

s l i d e r  ve loc i ty  vsYs i s  ca l led  
the  damping coef f ic ien t  p. By 

I 
I I Panel extension / varying t h e  value of t h i s  coef- 

SI ider travel I f i c i e n t  results can be obtained I - - - - - - - _ _  
I I 

One of t h e  major reasons f o r  using the  damper i s  t o  absorb a l l  excess 
energy during deployment s o  t h a t  the  deployment angular ve loc i ty  of t h e  support 
asms ;P i s  approximately zero at  f u n  deployment. This absorption of excess 
energy is  necessary t o  minimize deformations and stresses i n  t h e  panels and 
supporting s t ruc tu re  when f u l l  deployment is accomplished. 
f i gu re  11 t h a t  t h i s  funct ion of t h e  damper i s  accomplished very w e l l  when only a 
r e l a t i v e l y  s m a l l  amount of damping i s  present.  For t h e  past;cular s t ruc tu re  and 
sp in  speed analyzed, t h e  f inal  deployment angular ve loc i ty  is approximately 
zero f o r  a damping coef f ic ien t  p of 10 o r  larger.  This means that, f o r  la rge  
damping coef f ic ien ts ,  a l l  excess energy i s  d iss ipa ted  p r io r  t o  f u l l  deployment. 
Consequently, t h e  last  few degrees of opening are accomplished a t  a 
almost zero. For t h i s  reason, it might be necessary t o  have a spring-loaded 
device, or some other  energy source t h a t  a c t s  during t h e  last few degrees of 
motion, t o  force t h e  support arms i n t o  the  f u l l y  deployed posi t ion.  

It can be seen from 

(pf 

6 of 

.. 
The maximum deployment angular accelerat ion cPma,pos t akes  place 

i n s t a n t l y  upon unlocking of t h e  stowed configuration. 
t h i s  acce lera t ion  i s  a constant 100.45 radians per second per second and is  
independent of t h e  damping coef f ic ien t  p. This instantaneous acce lera t ion  

A s  shown i n  figure 11, 
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Figure 11. - Effect of damping on dynamics of satellite dur ing deployment. Init ial  spin rate, 
125 rpm. 

occurs because t h e  s l i d e r  must bu i ld  up some ve loc i ty  before the  l i n e a r -  
ve loc i ty  damper can r e t a r d  i t s  motion. 
e a r l y  i n  t he  deployment process,  t he  deployment of t h e  arms is slowed down. 
The maximum deployment angular dece lera t ion  &ax,neg t h a t  occurs a t  t h i s  
t i m e  i s  a l s o  shown i n  f igu re  11. 
peaks f o r  a damping coe f f i c i en t  p of approximately 100 pounds of damping 
force  per foot  per second of s l i d e r  veloci ty .  

i s  grea te r  i n  absolute  value,  o f t en  considerably so ,  than 'Pmax, pos 

A t  a l a t e r  time, although s t i l l  f a i r l y  

Note t h a t  t h e  absolute value of (p max , ne g 

p, For almost a l l  values .. of .. 
'Pmax,neg. 

The bending s t r e s s e s  i n  the  support rods and tubes r e s u l t i n g  from the  i n e r t i a l  
forces  induced by these acce lera t ions  w i l l  l i k e l y  be a major consideration i n  
t h e  design o f  t h e  s t ruc tu re .  

As is  t o  be expected, t he  maximum damper force 
damping coef f ic ien t  p i s  increased. For p approaching i n f i n i t y ,  F5,s i s  
about 3250 pounds per panel. 
t he  t o t a l  damper force  f o r  t h i s  s i t u a t i o n  i s  about 52,000 pounds. 
t h e  re ta rd ing  
deployment. 

F5,s 

Since the re  a r e  16 panels i n  the  deployable a rea ,  
This i s  a l s o  

increases  as t h e  

force  t h a t  would be required of a power mechanism t h a t  retards 
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Figure 12. -Variation of deployment angle for umbrella satellite with 
time for various values of damping coefficient. 

A s  t h e  umbrella satell i te 
package expands from the stowed 
t o  the  deployed condition, t h e  
moment of i n e r t i a  about t h e  spin 
a x i s  I, increases. I n  accord- 
ance with t h e  pr inc ip le  of con- 
servat ion of moment of momentum, 
t h i s  increase produces a corre- 
sponding decrease i n  t h e  sp in  an- 
gular velocity- i, or an angular 
decelerat ion Qneg of t h e  pack- 
age. The maximum spin angular 
deceleration 6max,neg is  plot-  
t e d  against  p i n  f igure  11. 
For small t o  moderate amounts of 
damping, emax 
than  f o r  the  undamped case. For 
high damping, 6max fa l l s  off 
sharply. For t h e  type of design 
used i n  t h e  expandable s t ruc ture  
of t h e  sample satel l i te  package, 
t h e  reduction of t h i s  emax i s  a 
most important funct ion of t h e  
damper. High-shearing stresses 
can be induced between t h e  panels 
of t h e  deploying surface area and 

.. 

.* 
is  not much less 

.. 

.. 

the  r e l a t i v e l y  large nondeployable mass by t h i s  deceleration. 
ments of t h e  panels and t h e  r e l a t i v e l y  flexible, lightweight support s t ruc ture  
shown i n  f i g u r e  6 (p. 8)  cannot withstand large t o r s i o n a l  loads. 
s t ruc ture ,  it would therefore  be necessary t o  use e i t h e r  a high-coefficient 
damper o r  a power mechanism t o  r e s t r a i n  deployment. 

The many seg- 

For t h i s  

Some partial r e s u l t s  of deployment angle cp as a function of time t are 
shown i n  figure 1 2  f o r  various amounts of damping. 
expandable s t ruc ture  na tura l ly  deploys very rapidly,  t h e  deployment time being 
less than 0.3 second. Because of t h e  computer time involved and because most 
of t h e  dynamic results of i n t e r e s t  occur ear ly  i n  t h e  deployment process, t o t a l -  
deployment times and p r o f i l e s  were  not obtained f o r  most cases. Note t h a t  
except f o r  very heavy damping t h e  s t ruc ture  hardly feels t h e  damper u n t i l  a 
considerable opening angle has been achieved. The reason f o r  t h i s  behavior 
can be found i n  figure 1O(c). Only about 1 2  percent of t h e  t o t a l  s l i d e r  t r a v e l  
has taken place when about 70 percent of t h e  deployment ((p = 1 radian)  has been 
accomplished. Thus, f o r  l i g h t  or moderate amounts of damping, the  s l i d e r  
ve loc i ty  and, therefore ,  t h e  damper force do not bu i ld  up u n t i l  late i n  t h e  
deployment process. Hence, f o r  these cases, t h e  e a r l y  p a r t  of the  deployment 
process i s  very similar t o  t h e  undamped case. It is t r u e ,  however, t h a t  t h e  
t o t a l  deployment time involved is  only seconds or perhaps minutes. 

For no damping, the  

.. 
Plots -of  deployment angular ve loc i ty  9, accelerat ion cp, sp in  angular 

v e l o c i t y  8 ,  and accelerat ion e against  deployment angle cp are presented i n  

15 



. 

.- 0 . 2  .4  . 6  .8 1.0 1.2 1.4 1.6 
Deployment angle, y ,  radians 

(a) Damping coefficient, 10pounds per foot per second. (b) Damping coefficient, ldl pounds per foot per second. 

Figure 13. - Dynamics of satellite deployment as funct ion of deployment angle for two values of damping coefficient. 

f igure 13 f o r  values of t h e  damping coe f f i c i en t  
per foot  per second. As  mentioned previously, t h e  onset rate of sp in  angular 
deceleration i s  very high; t h i s  onset rate is  associated with a l a rge  despin 
torque t h a t  would probably d i s t o r t  severely t h e  s t r u c t u r a l  design shown i n  
f igu res  5 and 6 (pp. 7 and 8 ) .  The reduction i n  sp in  angular ve loc i ty  8 i s  
a l s o  shown c l e a r l y  as a funct ion of deployment angle cp. Correlating f igu re  13 
with f i g u r e  1 2  gives the  v a r i a t i o n  of t hese  parameters with t i m e .  From t h i s  
correlat ion it can be seen t h a t  if t h e  absc issas  of f igures  13(a) and (b )  were 
time instead of deployment angle, t h e  slopes of t he  curves would be much s teeper ,  
s ince  the region up t o  1 . 4 7  radians would be severely compressed. 
ure 12 t h i s  compression i s  apparent because it takes less than  0 .4  second f o r  
the f i r s t  1 . 4 7  radians of deployment, whereas it takes  about 3 seconds f o r  t h e  

p equal t o  10 and l o 4  pounds 

From f i g -  

l a a t  0.1 ra&$ail f o r  &=-,piilg coefficieilt of 10 po-uii~s per foot  per secoiid, 

The magnitudes of t h e  dynamic forces  involved can be reduced by employing 
lower i n i t i a l  sp in  v e l o c i t i e s .  The i n i t i a l  s p i n  ve loc i ty  chosen, however, must 
be commensurate with t h e  requirement of sp in  s t a b i l i z a t i o n  of t h e  f i n a l  s tage  
of t h e  launch vehicle u n t i l  i n j e c t i o n  i n t o  o r b i t .  Lower sp in  v e l o c i t i e s  mean 
lower stresses i n  t h e  package components and permit l i g h t e r  s t r u c t u r a l  weights. 
Lower i n i t i a l  sp in  v e l o c i t i e s ,  however, a l s o  mean lower s p i n  v e l o c i t i e s  f o r  t h e  
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(a) Linkage 1. Maximum area, (b) Linkage 2. Maximum area, (c) Linkage 3. Maximum area, 

200 square feet. 310 square feet. 285 square feet. 

Figure 14. - Area comparison of various linkage concepts for umbrella satellite. (Maximum areas are those 
possible with these linkages and the Delta payload envelope. 

deployed satell i te.  
a t t i t u d e  s t a b i l i t y  of t h e  s a t e l l i t e  after in j ec t ion  i n t o  o r b i t ,  as w i l l  be 
discussed i n  t h e  sec t ion  SATEILITE A!ITITUDE STUDIES, 

This condition may not be des i rab le  from t h e  standpoint of ’ 
I AREA COMPARISONS OF VARIOUS PACKAGE DESIGN CONCEPTS 

The proposed umbrella satell i te package is  not presumed t o  be t h e  optimum 
way t o  u t i l i z e  the  capab i l i t i e s  of t h e  launch vehicle;  it is ra the r  a bas ic  
design on which t o  make a study of t h e  s t r u c t u r a l  problems involved i n  
expandable s a t e l l i t e  s t ructures .  I n  t h i s  section, two other possible  l inkage 
configurations for t h e  telescoping-umbrella package are presented b r i e f ly .  
These two configurations,  along with t h e  linkage analyzed i n  sec t ion  DYNAMIC 
ANALYSIS O F  PACKAGE DEPLOYMENT (l inkage l), are  shown schematically i n  f i g -  
ure 14. 
t h a t  two poin ts  of retarding-force appl icat ion are used r a the r  than one. 
these  r e t a rd ing  forces  i s  provided by a cable r e s t r a i n t ,  t h e  other  by a crank 
arm. 
deployment of t h e  package. 
spr ings t o  assist i n  t h e  f inal  s tages  of deployment. 

The two new configurations (l inkages 2 and 3)  d i f f e r  from linkage 1 i n  
One of 

The two forces  must be properly synchronized f o r  smooth operation i n  t h e  
Linkage 2 uses the energy s tored  i n  compression 

The results of an analysis  made on t h e  three linkage configurations t o  
determine t h e  maximum possible deployable area are presented i n  f igu re  14. 
t h i s  ana lys i s ,  the  length  of t h e  panels and the number of support arms are  
assumed t o  be t h e  same i n  a l l  cases, 
f e e t ,  t h e  deployed d isk  was subdivided i n t o  a grea te r  number of panels than 
shown i n  figure 5. This was necessary because of space l imi t a t ions  i n  t h e  an- 
nular stowage area of t h e  payload envelope. 

For 

For deployed areas greater than 200 square 

The maximum area t h a t  can be deployed with linkage 1 f o r  t h e  payload 
envelope considered i s  200 square feet, 
tube as i n  l inkage 2, a greater outer diameter and, therefore ,  a l a rge r  area 

With t h e  use of a second te lescoping 
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. 
of 310 square fee t  ( l imi ted  by t h e  payload capab i l i t y  of t h e  launch vehic le )  
can be obtained. The maximum a rea  obtainable with linkage 3 i s  285 square f e e t .  

From these  b r i e f  comparisons of t h e  t h r e e  linkage configurations,  t h e  f i n a l  
design of t h e  sa te l l i t e  package f o r  a mission such as t h e  one considered i n  t h i s  
study depends on a number of compromises among f a c t o r s  such as complexity of 
opening mechanism, weight l imi t a t ions ,  and r e l i a b i l i t y .  No attempt has been 
made here t o  define an optimum package design or t o  present a complete survey 
of possible design concepts. The i n t e n t  has been t o  i l l u s t r a t e  with general  
design ccncepts some of t h e  s t r u c t u r a l  problems involved i n  t h e  design of a n  
expandable s a t e l l i t e  package. 

SATELLITE ATTITUDE STUDIES 

The sample mission considered i n  t h i s  r epor t  i s  a meteoroid penetrat ion 
flux-rate survey made i n  a 400-mile c i r c u l a r  o r b i t  of t h e  Earth. The purpose 
of such a survey would be t o  determine the  number and d i r e c t i o n  of meteoroid 
penetrations through various thicknesses of s t r u c t u r a l  shee t  materials placed 
i n  a near-'Earth o r b i t  f o r  a usable l i f e t i m e  of about 1 year. Reference 3 shows 
t h a t  d i r ec t iona l ,  temporal, and s p a t i a l  va r i a t ions  e x i s t  i n  t he  meteoroid 
population near t h e  Earth,  as measured by Earth-based v i s u a l  and radar  surveys. 
It i s  therefore  des i rab le  t h a t  t h e  t e s t  specimens i n  t h i s  o r b i t a l  survey main- 
t a i n  a predetermined s p a t i a l  o r i en ta t ion  or t h a t  t h e  change i n  o r i en ta t ion  be 
determinable so  t h a t  some measurement of these  meteoroid d i r e c t i o n a l  va r i a t ions  
can be made. For t he  sample mission, r e l i ance  i s  made on passive a t t i t u d e  
control  as es tabl ished by sp in  s t a b i l i z a t i o n  of t h e  f i n a l  s tage.  The following 
discussion considers t h e  effect iveness  of such a passive a t t i t u d e  con t ro l  based 
on ce r t a in  simplifying assumptions. For t h i s  inves t iga t ion ,  a c t i v e  a t t i t u d e -  
control  systems were not considered. 

Factors Affecting Orbit and S a t e l l i t e  Att i tude 

Among t h e  more important f a c t o r s  a f f e c t i n g  t h e  o r b i t  and a t t i t u d e  of an 
a r t i f i c i a l  s a t e l l i t e  of t h e  Barth are the following: 

(1) Solar r a d i a t i o n  pressure 

( 2 )  Atmospheric drag 

(3) I n t e r n a l  energy d i s s ipa t ion  

(4 )  Distr ibut ion of m a s s  i n  s a t e l l i t e  

(5) Eddy current torques 

( 6 )  Permanent magnetic torques 

( 7 )  Induced magnetic torques 

(8 )  Gravity gradient torques 

( 9 )  Oblateness of t h e  Earth 
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(b) Heliocentric ecliptic coordinate system and geo- 
centric equatorial coordinate system. 

Figure 15. - Orbital geometry and coordinate systems used in satellite attitude studies. 

For t h e  o r b i t  a l t i t u d e  used f o r  t h z  sample mission, s o l a r  r a d i a t i o n  pressure 
and atmospheric drag can be neglected i n  comparison with other  disturbances 
(ref. 4).  The remaining f a c t o r s  l i s t e d ,  i n  general ,  can a f f e c t  the degree of 
a t t i t u d e  cont ro l  maintained by sp in  s t a b i l i z a t i o n  of t he  satel l i te  package. 

The proposed s a t e l l i t e  package i s  not a r i g i d  body and is ,  i n  f a c t ,  a 
very f l e x i b l e  body. Consequently, energy considerations are very important. 
Since energy w i l l  be d iss ipa ted  through t h e  f l e x i b l e  j o i n t s ,  t h e  s a t e l l i t e  
package w i l l  na tu ra l ly  seek t h e  lowest energy level. A spinning body i s  a t  i t s  
lowest energy l e v e l  i f  t h e  a x i s  of maximum moment of i n e r t i a  i s  coincident with 
t h e  axis of spin.  Therefore, where possible,  it i s  usua l ly  desirable t o  make 
t h e  a x i s  of  maximum moment of i n e r t i a  t h e  i n i t i a l  sp in  axis and thus  avoid 
subsequent o r i en ta t ion  changes t h a t  involve tumbling of t h e  satell i te.  I n  a l l  
a t t i t u d e  s tud ie s  made i n  t h i s  r epor t ,  it i s  assumed that sp in  takes  place about 
t h e  axis of maximum moment of i n e r t i a .  The syxrunetrical d i s t r i b u t i o n  of t h e  
masses of t h e  panels a t  t h e i r  r e l a t i v e l y  large r a d i i  makes possible  t h e  satis- 
fy ing  of t h i s  condition i n  t h e  umbrella configuration. This was one of t h e  
primary reasons f o r  s e l ec t ing  the  umbrella configuration ins tead  of t h e  wrap- 
around-wing design, as noted i n  t h e  sect ion "Inherent s t a b i l i t y  of unbre l la  
package.'' Possible  misalinement of t h e  thrus t  vector ,  unbalance, and o ther  
disturbances may cause t h e  sp in  axis i n i t i a l l y  t o  nuta te  s l i g h t l y  about t h e  
angular momentum vector. Because of t h e  f l e x i b i l i t y  of  t h e  s t r u c t u r ,  however, 
energy w i l l  be d iss ipa ted ,  and t h e  spin axis w i l l  again a l i n e  i tself  with t h e  
angular momentum vector. 

If a magnetic f i e l d  i s  cut by a conductor, a vol tage is  induced, and a 
current  flows i n  any closed loop of t he  conducting material. Thus, eddy 
cilrrent torques would be induced i n  the  proposed s a t e l l i t e  package because of 
t h e  l a rge  conducting surfaces spinning i n  the geomagnetic f i e l d  of t h e  Earth.  
Magnetic torques a l s o  arise from fe r rmagne t i c  material o rb i t i ng  i n  t h e  geo- 
magnetic f i e l d  of t h e  Eaxth. The eddy current and magnetic torques tend t o  
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(b) Initial angular position of ascending node, 0'; spin velocity of satellite, 2.195 radians per second (k = 0.495~10-~ radianlsec). 

Figure 16. - Precession of unit spin vector for 400-mile polar orbit with spin vector ini t ial ly parallel to Earth's orbital velocity vector. Moment 
of inertia about spin axis, 385 slug-feet2; moment of inert ia about transverse axis, 264 slug-feet'. 

despin the s a t e l l i t e ,  as wel l  as a f f e c t  i t s  a t t i t u d e  d i r e c t l y ,  by applying 
torques about axes other than the spin axis. 
measure or t o  predict .  
current  torques and the  magnetic torques (both permanent and induced) were 
s m a l l  f o r  t h e  proposed configuration and could be neglected i n  t h e  preliminary 
invest  i g8.t. ion. 

These torques are d i f f i c u l t  t o  
An independent study indicated t h a t  the  probable eddy 

Since t h e  grav i ta t iona l  a t t r a c t i o n  between two masses i s  inversely pro- 
p o r t i o n a l t o  the square of t h e  dis tance between them, a mass f a r t h e r  from t h e  
center of the  Earth i s  a t t r a c t e d  with a smaller force than an i d e n t i c a l  m a s s  
c loser  t o  the  center of t h e  ]Earth. 
a torque t h a t  i s  known as a gravi ty  gradient torque. 
Earth produces a gravi ta t iona l  force t h a t  does not l i e  i n  the o r b i t a l  plane. 

These d i f f e r e n t i a l  gravi ty  forces  r e s u l t  i n  
The oblateness of the  
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Figure 17. - Precession of unit spin vector for 4OO-mile equatorial orbit with spin vector in i t ia l ly  parallel to Earth's orbital velocity vector. 
Moment of inert ia about spin axis, 385 slug-fee@; moment of inertia abwt transverse axis, 264 slug-feet2. 
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(a) Initial angular position of ascending node, 0'; spin velocityof satellite, 0.549 radian per second (k = 1 .979~10-~  radianlsec). 
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(b) Initial angular position of ascending node, 90'; spin velocity of satellite, 0.549 radian per second (k = 1 .979~10-~  radianlsec). 

Figure 18. - Precession of un i t  spin vector for 400-mile orbit in i t ia l ly  normal to ecliptic plane with spin vector in i t ia l lyparal le l  
to Earth's orbital velocity vector. Moment of inertia about spin axis, 385 slug-feet2; moment of inertia about transverse axis, 
264 slug-fee@. 

This condition r e s u l t s  i n  a precession of the o r b i t a l  plane about t h e  polar 
axis .  Although gravi ty  gradient and oblateness e f f e c t s  a r e  s m a l l  i n  absolute 
magnitude, t h e  f a c t  t h a t  they can a c t  continuously over a long period of time 
can make t h e i r  net e f f e c t  appreciable. 

Analysis of Atti tude S t a b i l i t y  of S a t e l l i t e  

I n  order t o  evaluate passive a t t i t u d e  control  of t h e  proposed s a t e l l i t e  
for a 1-year l i fe t ime,  t h e  assumption was  made t h a t  a l l  previously l i s t e d  per- 
turbat ion sources a f f e c t i n g  t h e  o r b i t  and a t t i t u d e  of t h e  s a t e l l i t e  were of 
secondary importance with the  exception of gravity-gradient torque and Earth 
obleteness. Z n  the  basis of these two per turbat ions,  a study was made of the  
a t t i t u d e  behavior of the  satel l i te  for the  sample mission previously discussed. 
All orbi t s  studied were prograde. 

Equations f o r  the  grav i ty  gradient torque and i t s  e f f e c t  on s a t e l l i t e  
a t t i t u d e  are given i n  appendix C.  The o r b i t a l  geometry and the  coordinate 
systems used i n  t h i s  discussion on s a t e l l i t e  a t t i t u d e  a r e  given i n  f igure  15 
( p .  1 9 ) .  For an Earth s a t e l l i t e ,  which i s  a body of revolut ion symmetric about 
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radian/ sed. 

Figure 18. - Concluded. Precession of unit spin vector for W m i l e  orbit in i t ia l ly  normal to ecliptic lane with spin vector. 
in i t ia l ly  parallel to Earth's orbital ve oci vector. Moment of inertia about spin axis, 385 slug-feet rp ; moment of inertia 
about transverse axis, 264 slug-feet h . 'tY 

i t s  sp in  axis, t h e  instantaneous gravi ta t iona l  torque as presented i n  refer- 
ence 5 i s  given by equation (Cl) i n  appendix C. The average torque over one 
o r b i t  as derived i n  reference 6 is presented i n  equation (C2) .  
can be used with appropriate time increments t o  give e s s e n t i a l l y  the  same 
r e s u l t s  f o r  change i n  satell i te a t t i t ude .  

E i ther  equation 

From equation (Cl) o r  (C2) it is seen tha t  i f  t h e  satel l i te  i s  spher ica l ly  
symmetric (AI = 0) t h e r e  is  no gravi ta t iona l  gradient torque. 
t i o n  (C2) ind ica tes  t h a t ,  i f  t h e  sp in  axis is p a r a l l e l  o r  perpendicular t o  t h e  
orb i ta l  plane, t h e  average torque over each o r b i t  is  approximately zero. This 
i s  not s t r i c t l y  t r u e  for t h e  case i n  which the sp in  axis l i e s  i n  the  o r b i t a l  
plane because during an o r b i t  continual s l i gh t  changes i n  a t t i t u d e  produce 
unsymmetric conditions t h a t  are not accounted for i n  t h i s  approximation. I n  
f a c t ,  as energy i s  d iss ipa ted ,  an Earth s a t e l l i t e  tends t o  a l i n e  i tself  s o  t h a t  
t h e  ax i s  of minimum moment of i n e r t i a  i s  i n  t he  d i r ec t ion  of t he  l o c a l  v e r t i c a l  
plane and t h e  maximum moment of i n e r t i a  axis is  normal t o  t h e  o r b i t a l  plane 
( r e f .  7) .  Unfortunately, even t h i s  or ien ta t ion  is not s t ab le  because of t h e  
oblateness of t h e  Earth. This oblateness tends t o  precess t h e  o r b i t a l  plane 
about t h e  polar ax i s  of t he  Earth with a frequency t h a t  is a funct ion of t h e  
mean a l t i t u d e  of  t h e  s a t e l l i t e  and t h e  o r b i t a l  i nc l ina t ion  angle (ref. 8 ) .  

Also, equa- 
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Thus, even i f  t h e  s p i n  ax is  of t h e  s a t e l l i t e  i s  i n i t i a l l y  normal t o  t h e  o r b i t a l  
plane, t h i s  o r ien ta t ion  i s  not s t a b l e ,  except f o r  polar and equator ia l  o r b i t s .  

Geocen- 
t r i c  

angu la r  
v e l o c i t y  

f o r  
c i r c u l a r  

o r b i t ,  
coo, 

r ad ians  
s e c  

The equations f o r  the  change i n  a t t i t u d e  brought about by gravi ty  gradient 
torque and oblateness e f f e c t s  are presented i n  appendix C. These equations 
were programmed on an IBM 7094 e lec t ronic  computer t o  obtain t h e  longtime 
r e s u l t s  presented i n  f igures  16  t o  19. Oblateness was accounted f o r  simply by 
t h e  nodal regression r a t e  dR/dt as obtained from reference 8. For a l l  cases 
shown i n  the f igures ,  a 400-mile c i r c u l a r  o r b i t  was considered, and t h e  sp in  
vector was i n i t i a l l y  p a r a l l e l  t o  the  Ear th ' s  o r b i t a l  ve loc i ty  vector and con- 
s t a n t  i n  magnitude. The left-hand s ides  of f igures  16 t o  1 9  represent the  
projection of t h e  uni t  vector i n  t h e  d i rec t ion  of the  instantaneous-spin ax is  
on t h e  e c l i p t i c  plane. The right-hand s ides  give the  component of t h e  uni t  
vector normal t o  t h e  e c l i p t i c  plane as a function of time. Polar,  equator ia l ,  
i n i t i a l l y  e c l i p t i c ,  and i n i t i a l l y  normal t o  the  e c l i p t i c  o r b i t s  a r e  included 
i n  the  study. Table I s m a r i z e s  the  input f o r  t h e  various computer solut ions 
obtained. I n  most cases, a considerable amount of wandering of t h e  sp in  axis 
takes  place i n  the 1-year l i fe t ime being considered. A s  i s  t o  be expected, t h e  
r a t e  of precession is inversely proportional t o  t h e  sp in  speed i n  a l l  cases. 

Angle 
be- 

tween 
o r b i t a l  

and 
equa- 

t o r i a l  
p lanes ,  

a ,  
deg 

Polar o r b i t s .  - Some of t h e  r e s u l t s  f o r  the  polar o r b i t  s tud ies  a r e  
shown i n  f igure 16 .  The a t t i t u d e  of t h e  spinning s a t e l l i t e  is most stable and 
predictable i n  a polar o r b i t  f o r  the  conditions investigated i n  t h i s  repor t .  
The motion is r e p e t i t i o u s  i n  t h a t  t h e  d i rec t ion  of the  sp in  vector is periodic 
i n  k (eq. (C7)). Therefore, t h e  o r b i t a l  a l t i t u d e ,  spin speed, and m a s s  d i s t r i -  
bution can be var ied within limits, and t h e  motion of t h e  spin axis w i l l  be the  
same except f o r  the  time required f o r  a change i n  a t t i t u d e  t o  take place. The 
a t t i t u d e  remains f ixed for a l l  p r a c t i c a l  purposes when t h e  spin a x i s  i s  paral-  
l e l  or perpendicular t o  t h e  polar o r b i t  plane. From t h e  r e s u l t s  not p lo t ted  i n  
the  f igures  because they would show only as a point ,  the  case i n  which t h e  sp in  

Moment 
Of 

i n e r t i a  
about  
s p i n  
axis, 
I,, 

Sl"g-ft2 

TABLE I. - INPUT DATA FOR IBM 7094 SATELLITE-ATTITUDE PROGRAM 
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sec  

POSitiOT 

0 
0 
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Component 
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vec tor  i n  
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sx,i 
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'0121- 

: qua to r i a l  
:-,--torial 
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~~ 
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0 
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A t t i  tude  
parameter,  

k, 
r ad ians  

s e c  

t i o n  
i n t o  

o r b i t  

0.549 
2.195 

1. 979X10-E 
.495 

0 
0 

90 
90 

1.000 
1.000 I : 

0 
0 
0 

66.5 
66 .5  
66.5 
66.5 

~~ 

0.549 
i.0353 
2.195 

1. 979x10-f 
.YUY 
.495 
-~ 
1 . 9 7 9 ~ 1 0 - f  
1 .979 

-1.979 
.495 

1.979x10-' 
1 .979  

.495 

__ -- 

0 
0 
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1.000 I 0 
1.000 0 
1.000 I 0 

.455Xi0-f  

.455 
. ,455 

1.588~10-f 
.588 
,588 
,598 

264 I .ooin7? I 
264 1 ,001073 1 -I 1.000 1.000 0 

0 
0 
0 

0.549 
.549 

- . 549  
2.195 

0.549 
.549 

2.195 

,001073 

~ 

1.000 
1.000 

1.000 
1,000 
1. GOO 

23.5 
23.5 
23.5 

.. 3 3 1 x 1 0 4  

. .331 
,331 

0 
0 
0 

%orresponds  t o  400-mile c i r c u l a r  o r b i t .  
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a x i s  was normal t o  t h e  o r b i t a l  plane was s l i g h t l y  more s t ab le  than that i n  
which t h e  sp in  a x i s  l a y  i n  t h e  o r b i t a l  plane. 
t he  a t t i t u d e  vasied by less than 0.01 percent i n  1 year f o r  
per second which corresponds t o  k = 1 .979~10 '~  rad ian  per second. (This 
a t t i t u d e  change was determined by project ing the f i n a l  sp in  vector on i ts  
o r i g i n a l  pos i t i on . )  Consequently, if t h e  a t t i t u d e  of t h e  vehicle a t  any time 
i s  desired,  and i f  ac t ive  a t t i t u d e  control  and a t t i t u d e  sensors are not incor- 
porated i n t o  t h e  design, a polar o r b i t  with the sp in  axis parallel or perpen- 
d icu lar  t o  t h e  o r b i t a l  plane enables one t o  predict  t h e  a t t i t u d e  qui te  ac- 
cura te ly  a t  any time. This predict ion,  of course, is  based on t h e  assumption 
t h a t  magnetic torques and other  disturbances are small i n  comparison t o  t h e  
g rav i t a t iona l  gradient torque. If the  a t t i t u d e  i n  t h i s  polar  o r b i t  i s  estab- 
l i shed  with t h e  sp in  vector ly ing  i n  t h e  e c l i p t i c  plane, t h e  sensing surface 
will per iodica l ly  (every 6 months) be perpendicular t o  t h e  Earth 's  o r b i t a l  
ve loc i ty  vector  and, thus ,  t o  t h e  suspected path of most of t h e  debris  i n  t h e  
v i c i n i t y  of t h e  Earth. 
occurrences, t h e  sensing surface will be p a r a l l e l  t o  t he  Ear th ' s  o r b i t a l  veloc- 
i t y  vector and should thus experience a minimum frequency of impact. 
quently, if t h e  satel l i te  has a s u f f i c i e n t l y  long l i f e t ime ,  u se fu l  information 
as t o  t h e  d i r e c t i o n a l i t y  of t h e  impacting p a r t i c l e s  can be obtained. 

Even i n  t h e  worst of these cases, 
LU, = 0,549 rad ian  

After 3 months of being out of phase with these per iodic  

Conse- 

If maintaining a su i t ab le  spin rate i s  not f eas ib l e ,  then a polar o r b i t ,  
with the  axis of symmetry normal t o  or  i n  the o r b i t a l  plane can be used where 
a s t a b l e  a t t i t u d e  is  desired because these  or ientat ions a r e  inherent ly  very 
s t a b l e  even without spin.  

Equator ia l  o rb i t s .  - Although a considerable amount of motion takes place 
i n  t h e  equator ia l  o r b i t ,  it might be possible t o  use t h i s  motion t o  good 
advantage. 
were  t o  remain pazallel t o  t h e  Ear th ' s  o r b i t a l  ve loc i ty  vector ,  a maximum 
nmber of impacts would be experienced by the sensing surface within a given 
time (ref. 3). As seen i n  figure 17(b)  (where k = 0.989x10'6 radian/sec) ,  
t h e  sp in  axis precesses i n  such a way that it maintains t h e  same general  direc- 
t i o n  as t h e  Ear th ' s  o r b i t a l  ve loc i ty  vector ,  although it does rise out of t h e  
e c l i p t i c  plane. 
per iodic  i n  k. I n  a l l  except polar o r b i t s ,  however, o n l y t h e  sp in  speed and 
mass d i s t r i b u t i o n  can be var ied f o r  a given value of 
motion remain r epe t i t i ous ;  t h i s  i s  because varying t h e  a l t i t u d e  varies the  
oblateness e f f e c t ,  which i s  a funct ion of o r b i t a l  a l t i t u d e  and o r b i t a l  inc l ina-  
t ion .  
axis and t h e  equator ia l  plane, t h e  oblateness does not a f f e c t  motion i n  polar  
o rb i t s .  Also, if t h e  satell i te is inser ted  i n t o  an equator ia l  o r b i t  with its 
sp in  axis perpendicular t o  t h e  o r b i t a l  plane, its or ien ta t ion  will be s t ab le ,  
This can be done because t h e  only e f f e c t  of oblateness on equator ia l  o r b i t s  i s  
t o  precess t h e  apogee and perigee about t h e  polar axis, t h e  o r b i t a l  plane always 
remaining parallel t o  i ts  o r i g i n a l  posit ion.  

There i s  reason t o  believe that if t h e  sp in  axis of t h e  satel l i te  

As with t h e  polar o r b i t ,  the  motion i s  r e p e t i t i o u s  and 

k and still  have t h e  

Because t h e  oblate  Earth model used here is symmetric about t h e  polar  

I n i t i a l l y  normal t o  the  e c l i p t i c  orb i t s .  - Motion i n  an o r b i t a l  plane 
t h a t  is  i n i t i a l l y  normal t o  t h e  e c l i p t i c  plane is shown i n  figure 18. Because 
of Earth oblateness,  however, t h i s  plane varies with time between 43O and 90' 
t o  t he  e c l i p t i c  plane. 
case i n  e i t h e r  polar o r  equator ia l  o rb i t s .  A s  previously mentioned, t he  sp in  

The a t t i t u d e  behavior is  much more e r r a t i c  than was t h e  
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(a) Init ial  angular position of ascending node, 0'; spin velocity of satellite, 0.549 radian per second (k  = 1.979~10-~ radianlsec). 

(b) Initial angular position of ascending node, 90'; spin velocity of satellite, 0.549 radian per second (k  = 1 . 9 7 9 d  radianlsec). 
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( c )  Initial angular position of ascending node, 0'; spin velocity of satellite, 2.195 radians per second (k  = 0.495~10-~ radianlsec) 

Figure 19. - Precession of unit spin vector for 400-mile orbit  ini t ial ly parallel to  ecliptic plane with spin vector ini t ial ly parallel to  Earth's 
orbital velocity Vector. Moment of inert ia about spin axis, 385 slug-feet2; moment of inert ia about transverse axis, 264 slug-feet2. 
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vector  i s  i n i t i a l l y  p a r a l l e l  t o  t he  Earth's o rb i ta l  ve loc i ty  vector. 
motion represented i n  figure 18(a)  i s  f o r  the case i n  which the  sp in  axis is 
i n i t i a l l y  perpendicular t o  the  o r b i t a l  plane; t h a t  i s ,  the  o r b i t a l  plane 
i n i t i a l l y  contains t h e  Earth-Sun l ine .  Figure 18(b)  describes t h e  motion when 
t h e  sp in  a x i s  o r i g i n a l l y  l ies i n  t h e  o r b i t a l  plane; thus ,  t h e  o r b i t a l  plane i s  
i n i t i a l l y  normal t o  t h e  Earth-Sun l i n e .  The i n i t i a l  conditions f o r  t h e  motion 
described i n  f i g u r e  18(c)  are t h e  same a6 for  figure 18(a) except t h a t  t h e  sp in  
d i r ec t ion  i s  reversed. The motions are obviously not very similar. This 
i l l u s t r a t e s  c l e a r l y  a very s ign i f i can t  point;  namely, both t h e  magnitude and 
d i r ec t ion  of sp in  a r e  very important i n  describing t h e  motion of a spin- 
s t a b i l i z e d  satellite. 
i s  four times t h a t  f o r  t h e  motion described i n  f igu re  18(a).  
t h a t  t h e  s a t e l l i t e  i s  much more stable with the  higher sp in  r a t e .  

The 

Figure 18(d)  illustrates t h e  motion when t h e  sp in  speed 
It can be seen 

I I n i t i a l l y  e c l i p t i c  o rb i t s .  - Final ly ,  consideration was given t o  t h e  motion 1 i n  an Z n i t i a l l y  e c l i p t i c  o rb i t  plane ( f ig .  19). This plane varied with time 
from 0" t o  4 7 O  with t h e  e c l i p t i c  plane because of t h e  oblateness of t he  Earth. 
As w a s  t h e  case with motion i n  a plane i n i t i a l l y  normal t o  t he  e c l i p t i c ,  t h e  
motion i s  not r e p e t i t i o u s ,  although it is  not as e r r a t i c  as was the  motion i n  
t h e  plane normal t o  the  e c l i p t i c .  

From t h e  very f e w  cases s tudied here for a 400-mile c i r cu la r  o r b i t  of t h e  
Earth with t h e  satell i te sp in  vector  i n i t i a l l y  p a r a l l e l  t o  t he  Earth 's  
o r b i t a l  ve loc i ty  vector ,  t h e  a t t i t u d e  of a spin-s tabi l ized satel l i te  may vasy 
considerably. The examples presented herein are f o r  purposes of i l l u s t r a t i o n  
only. 
s tudied with t h e  r e su l t i ng  a t t i t u d e  motions determined. f im t h e  examples 
considered, however, it i s  d i f f i c u l t  t o  predict  t h e  a t t i t u d e  behavior of a 
satel l i te  from a known but somewhat d i f fe ren t  case. Therefore, it was believed 
t h a t  l i t t l e  fu r the r  general  information could be obtained by studying more 
spec i f ic  cases. 
important f ac to r s  a f f ec t ing  s a t e l l i t e  a t t i t u d e  are presented i n  references 9 
t o  12. 

Many o ther  combinations of t h e  parameters l i s t e d  i n  t a b l e  I could be 

More spec i f i c  and extensive analyses of some of t h e  more 

Some general  conclusions can be made f r o m  t h e  s tud ies  described i n  t h i s  
repor t  as t o  configuration, stowage and deployment, and a t t i t u d e  s t a b i l i t y  of 
expandable spin-s tabi l ized satellites. 

Of t h e  two bas ic  configurations considered, t h e  umbrella type is  b e t t e r  
than t h e  wrap-around-wing type i n  a number of ways. Some of these  ways are 
(1) t h e  deployed umbrella s a t e l l i t e  i s  s table  about its o r i g i n a l  sp in  axis, 
whereas t h e  wrap-around-wing satell i te is not; ( 2 )  t h e  maximum width dimension 
f o r  a given tes t  area i s  less for t h e  umbrella satell i te,  which makes ground 
t e s t i n g  i n  space-environment f a c i l i t i e s  eas ie r  and decreases t h e  'Length of t h e  
instrument leads connecting the  sensors t o  t h e  te lemetry package; and (3) t h e  
deployment of t h e  stowed umbrella package i s  more pos i t i ve ly  control led.  The 
main advantage of t he  wrap-around wing is  compactness. 

Two major f a c t o r s  a f f ec t ing  t h e  design of t h e  umbrella s t ruc tu re  are t h e  
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i n i t i a l  spin r a t e  and t h e  method of deployment. 
be real ized by using a lower i n i t i a l  spin r a t e  on t h e  last rocket s tage before  
deployment. 

Weight reductions possibly can 

Within t h e  assumptions made for the  a t t i t u d e  s tudies ,  a satel l i te  i n  a 
polar orb i t  with i t s  spin axis p a r a l l e l  o r  perpendicular t o  the  o r b i t a l  plane 
has an e s s e n t i a l l y  s t a b l e  a t t i t u d e .  A l s o ,  a s a t e l l i t e  i n  an  equator ia l  o r b i t  
having i ts  spin a x i s  normal t o  t h e  o r b i t a l  plane has a r e l a t i v e l y  s t a b l e  at- 
t i t u d e .  All other  cases considered r e s u l t e d  i n  precession of the  s p i n  axis of 
the  s a t e l l i t e  from i t s  i n i t i a l  o r ien ta t ion ,  which w a s  p a r a l l e l  t o  t h e  Ear th ' s  
o r b i t a l  veloci ty  vector. A s  would be expected, t h e  rate of t h i s  precession w a s  
inversely proportional t o  the  s p i n  r a t e  of t h e  s a t e l l i t e  i n  a l l  cases. For t h e  
polar and equator ia l  o r b i t s ,  t h e  magnitude of t h e  deviat ion from the  i n i t i a l  
o r ien ta t ion  w a s  independent of sp in  r a t e ;  f o r  t h e  i n i t i a l l y  e c l i p t i c  and normal 
t o  the eclipti-c o r b i t s ,  t h i s  magnitude was  a f fec ted  by t h e  sp in  rate. I n  an  
equatorial  o r b i t ,  the  spin axis might possibly precess i n  such a way as t o  
c losely approximate t h e  d i rec t ion  of t h e  Earth 's  o r b i t a l  veloci ty  vector. 
i n i t i a l l y  e c l i p t i c  and normal t o  t h e  e c l i p t i c  o r b i t s  gave spin-axis or ienta-  
t i o n s  t h a t  were very e r r a t i c .  

The 

For an expandable spin-s tabi l ized s a t e l l i t e  t h e  f i n a l  choice of such 
design d e t a i l s  as s p i n  r a t e ,  deployment system, and nature of o r b i t ,  could be 
a r r ived  a t  by making compromises based on t h e  avai lable  payload envelope, 
launch vehicle requirements, experiment requirements, economic r e s t r i c t i o n s ,  
and interact ions of such environmental forces  as gravi ty  gradients and magnetic 
torques.  The s tudies  reported herein point out t h e  e f f e c t s  of some of these 
f a c t o r s  t h a t  must be considered. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 3, 1964. 
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APPENDIX A 

SYMBOLS 

ve loc i ty  coef f ic ien t ,  ft 

slider travel, f t  

force ,  l b  

d i s s ipa t ion  function, equal t o  one-half t he  rate a t  which energy is  
d i s s i p a t  ea, f t -lb/sec 

moment of i n e r t i a ,  slug-ftz 

difference between moments of i n e r t i a  about t h e  sp in  ax i s  and t ransverse 
ax i s ,  I, - It, s lug- f tz  

t o t a l  k i n e t i c  energy, f t - l b  

a t t i t u d e  parameter, AI/CU,I~, radians/sec 

dis tance from point  1, ft ( f ig .  10(b) )  

panel extension, f t  

m a s s ,  s lugs  

number of degrees of freedom 

generalized forces  corresponding t o  generalized coordinates describing 
motion 

generalized coordinates descr ibing motion 

radial dis tance from sp in  axis of package, f t  

u n i t  vector  i n  d i r ec t ion  of s a t e l l i t e  pos i t ion  vector 

u n i t  vector  i n  d i r ec t ion  of s a t e l l i t e  sp in  a x i s  

g rav i t a t iona l  gradient  torque, lb-ft 

time, see o r  day 

l i n e a r  ve loc i ty ,  f t / s e c  

he l iocen t r i c  e c l i p t i c  coordinate axes 

geocentric e quator i a l  coordinate axes 
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a angle between o r b i t a l  plane and equator ia l  plane, radians 

B angular pos i t ion  of s a t e l l i t e  i n  o r b i t  measured from ascending 
note i n  d i r ec t ion  of motion, radians 

0 

I-I damping coef f ic ien t ,  l b / ( f t / s ec )  

angular pos i t ion  about sp in  axis, radians 

Yl angular pos i t ion  of main support arm, radians 

n 

?E 

angular pos i t ion  of ascending node measured from x-axis, radians 

angular ve loc i ty  of Earth about Sun, radians/sec 

a0 

U S  

Subscripts : 

d deployed 

f f i n a l  

i 

k 

geocentric angular ve loc i ty  f o r  c i r cu la r  o rb i t ,  radians/sec 

instantaneous sp in  ve loc i ty  of s a t e l l i t e ,  radians/sec 

i n i t i a l  (at  in se r t ion  i n t o  o r b i t )  

nondeploying port ion of s a t e l l i t e  package 

2 

max maximum 

di rec t ion  p a r a l l e l  t o  main support rod and tube 

n d i rec t ion  normal t o  rectangular panel surface 

ne g negative 

P panel assembly and tube 

POS pos i t ive  

r main support rod 

S spin axis 

t 

U undeployed (stowed) 

X,Y,Z hel iocent r ic  e c l i p t i c  coordinate axes 

transverse axis (normal t o  s a t e l l i t e  s p i n  a x i s )  

x,y,z geocentric equator ia l  coordinate axes 
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. 
e d i r ec t ion  tangent t o  c i r c u l a r  arc about sp in  axis 

cp 

1 t o  5 support l inkage points  ( f i g .  lO(a)) 

about axis parallel t o  linkage p in  1 

Superscr ipts  : 

first der iva t ive  with respect  t o  t h e  

second der iva t ive  with respec t  t o  time .. 
t first der iva t ive  with respect  t o  cp 

cent r  o i d a l  - 

+ vector quant i ty  
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APPENDIX B 

ANALYSIS OF RESTRICTED SPIN DEPLOYMENT OF 

"EXESCOPING-UMBRELLA SATELLITE 

Equations of motion a r e  developed i n  t h i s  appendix f o r  r e s t r i c t e d  sp in  
deployment of t h e  umbrella sa te l l i te  t h a t  i s  shown schematically i n  f i g -  
ures  lO(a) and (b ) .  
ing assumptions : 

The development of these equations i s  based on the  follow- 

(1) Deployment takes  place under conditions of zero gravi ty  

( 2 )  The m a s s  center of t h e  s a t e l l i t e  is  s t a t iona ry  

(3)  The masses o f  rods A and B ( f i g .  7 ( c ) ,  p. 9 )  are negl ig ib le  

(4)  There i s  no f r i c t i o n  

Damped Case 

For a nonconservative dynamic system with constant p o t e n t i a l  energy and 
no external  forces ,  t he  well-known Lagrangian equations a r e  

For the  umbrella s a t e l l i t e ,  t he  generalized coordinates ( f i g .  10(b), p. 1 2 )  a r e  

1 qj=l = 8 angular-spin coordinate 

J Sj=2 = CP angular-deployment coordinate 

The t o t a l  k i n e t i c  energy i s  

The distance between t h e  plane of t he  pivot  points  of t he  main support 
rods and the  mass center of  t h e  s a t e l l i t e  i s  
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~ 
Therefore, i n  accordance with assumption (2) 
l i t e  centerbody is  

t h e  a x i a l  ve loc i ty  of t h e  satel- 
I 

The remaining ve loc i ty  components of t he  various masses are 

The moments of i n e r t i a  of each support rod and panel about t he  cent ro ida l  axes 
and p a r a l l e l  t o  the sp in  axis are 

- The vscriations i n  t h e  p r inc ipa l  moments of  i n e r t i a  Ip,n and Tp,z during de- 

ployment a re  s m a l l  and can be neglected. Z p  
and d with t h e  deployment angle rp are given i n  figure lO(c)  f o r  t h e  sample 
problem linkage. 
p, t h e  d i s s ipa t ion  funct ion becomes 

The m i a t i o n s  i n  the  dimensions 

F ina l ly ,  for a l inear-veloci ty  viscous damper with coef f ic ien t  
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When equations ( B l )  t o  (B5) a r e  combined, t h e  equations of motion of t h e  de- 
ploying umbrella s a t e l l i t e  with viscous damping and no ex terna l  forces  a r e  

+ 2mpCp,ec&e + + ) = 0 (B6a)  

and 

Equations (B6a)  and (B6b) were integrated numerically, using a Ruge-Kutta 
procedure, t o  obtain t h e  r e s u l t s  shown i n  f igures  11 t o  13. 

Ful ly  Damped Deployment Case 

For a dynamic system subjected t o  ex terna l  forces ,  t h e  right-hand s ides  
Qjy which cor- of equations (B6a) and (B6b) a r e  equal t o  generalized forces  

respond t o  the  generalized coordinates qj,l = e and qj=2 = Cp. If t h e  
s l i d e r  force FgYs 
than an induced damping force, t h e  generalized forces  become 

is  now considered as an ex terna l  r e s t r a i n i n g  force r a t h e r  

I Qj=1 0 

Fully damped o r  power-restrained deployment i s  assumed t o  take  place slowly, 
which leads t o  the  conditions 

' *  . 
( p = ( p = o  (B7b) 

Equation (B6a) then vanishes , and equation (B6b) , modified i n  accordance with 
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. 
b 

(B7a), leads t o  t h e  following r e l a t i o n  f o r  the required r e s t r a in ing  force :  

d 

The maximum r e s t r a i n i n g  force i s  required when cp = 0,  or 

R u2 1 s,u 
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APPENDIX c 

EFFECT OF GRAVITATIONAL TORQUE ON S m I T E  ATTITUDE 

Reference 5 shovs t h a t  t h e  instantaneous g rav i t a t iona l  gradient torque 
ac t ing  on an Earth s a t e l l i t e  i s  

The average torque over one o r b i t  i s  ( r e f .  6 )  

By using t h e  c l a s s i c a l  equation f o r  gyroscopic motion, a very d i r e c t  approach 
for determining the  a t t i t u d e  of a spinning s a t e l l i t e  acted on by g rav i t a t iona l  
torque is presented i n  reference 2. The equation r e l a t i n g  the  rate of change 
i n  a t t i t u d e  t o  t h e  g rav i t a t iona l  torque is  

By subs t i t u t ing  e i t h e r  equation ( C l )  or ( C 2 )  i n t o  equation ( C 3 )  and by using 
appropriate time increments, t h e  change i n  a t t i t u d e  of t he  sp in  a x i s  due t o  
grav i ta t iona l  torque can be found. Since the  i n i t i a l  a t t i t u d e  i s  a known 
quantity,  t h e  a t t i t u d e  a t  any t i m e  can now be obtained. 

A s  w a s  shown i n  reference 2,  subs t i t u t ion  of equation ( C l )  i n t o  
equation ( ~ 3 )  r e s u l t s  i n  

where 

36 



-+ 
The geocentric e q u a t o r d l  coor inate system t o  which the  uni t  vector s 

+ i s  herein r e fe r r ed  i s  shown i n  f igure E ( a >  (p.  19) .  The vector s can also 
be r e fe r r ed  t o  the  he l iocent r ic  e c l i p t i c  coordinate system shown i n  f ig-  
ure 15(b)  by t h e  equations 

sx = sx 

s Y = sy cos 23.5' - sz  s i n  23.5' (c9) 

s = sy s i n  23.5' + sz cos 23.5' 
Z 

The results presented i n  figures 16  t o  19  (pp. 20 t o  26) r e f e r  t o  t h e  e c l i p t i c  
coordinate s ys tern. 

The pos i t ion  of t he  s a t e l l i t e  with respect t o  the  Earth a t  any time (see 
f i g .  1 5 ( a ) )  is  given by 

rx = cos R cos p + s i n  R s i n  p cos a (c11) 

ry = s i n  R cos p - cos R s i n  p cos a (c12) 

The e f f e c t  of Earth oblateness on the  a t t i t ude  of a spin-s tabi l ized Ebrth 
s a t e l l i t e  i s  accounted f o r  simply by a change i n  t he  posi t ion of t he  ascending 
node R. The oblateness tends t o  precess the  o r b i t a l  plane about t h e  Earth 's  
polar ax i s  per iodica l ly  a s  a function of o rb i t a l  a l t i t u d e  and inc l ina t ion  
angle. 
o r b i t a l  inc l ina t ion  angle is  given i n  reference 8. 

A plo t  of nodal regression rate as a function of mean a l t i t u d e  and 
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